

 FUNCTIONS, typedef,
 POINTERS to FUNCTIONS,
 STACKS and RECURSION.

 Mathematics is the Science of Analogies.
 Sir Michael Atiyah (“Fields Medal”, 1966)

5.1 Functions.
 In a program, it is almost always necessary to perform a specific task that is repeated
many times or a task involving a complex algorithm that, for security reasons or better program design,
needs to be encapsulated. It also often happens, that a task that is performed in one program is useful for
other different programs.
The C language provides what it calls Functions that allow statements and declarations to be grouped
together to perform a specific algorithm or task. A function can be used multiple times in one program or
used in different programs.
A function can also navigate through different files that make up a program. Functions are a very
important part of the C language. The C language is widely used to write APIs ("Application Programming
Interfaces") such as the APIs of Google's TensorFlow software for Artificial Intelligence, APIs for computer
graphics (Vulkan, OpenGL), etc. The C language is used to write these APIs because of its versatility and
speed of execution. In general, APIs are Functions that transfer their results to the outside by using pointer
variables as parameters. This can certainly be done efficiently in the C language.

We will use the following analogy to describe a function:
A function is a Transformer that accepts parameters (data of a certain Type) to execute a task or algorithm
and that once performed, the task or algorithm is transformed into a single result or return of a Type
accepted in the C language, with certain exceptions.

5

3

The following figure graphs a function:

 ……..

 Transforms into

 Basic variable

 Pointer variable

 Structure

 User variable constructed
 with typedef.

 Array is NOT allowed

The figure above represents the way a function is most commonly used in a program, that is, when it
receives parameters and returns or transforms into a variable of a data type.

ALGORITHM

FUNCTION

NUMBER

POINTER

STRUCTURE

OTHERS..

.…

PARAMETERS

RETURN

of Function

The BODY of the function is that part of the definition enclosed in curly brackets and represents all the
statements and declarations that make up (algorithm) what the function executes.

If a function does not return anything, the void type is used for the return. In this case, the function is not
transformed into anything when executed and its effects depend on the statements used in the definition.
Example:
 void func2(int x)
 {
 printf(“%d\n”, x);

}

When executed, this function prints the value of the variable x on the screen. It does not return anything.
The call to a function like func2(...) is simply:

func2(34); // as any statement
 // prints the value 34.

An argument in a function call is always copied to a parameter of the same type in the function
definition.
This is explained in the following diagram:

Type func(Type); // declaration of the function

Memory
int main(void)
{

 Type a = valor; a
 function call

 Type ff = func(a) ;
 ………………
 ……………… argument a
 return 0; is copied to x this implies that
}
 Memory

Type func(Type x)

{

 // Statements x

}

 valor is a copy of valor

Example: If Type is a float, then valor is a decimal number that is copied into x. If Type is a type-to-pointer,
then a is a pointer and valor is an address (of some object) that is copied into x. Importantly, the Type of
the argument a must be equal to the Type of the parameter x.
If the argument a is directly the address of a variable such as &variable, then it is considered a constant
and is copied directly into the x parameter.
If a were a numeric value, not a variable, it is copied directly into x.

valor

valor

Can a function be used as a parameter of another function?
The answer to this question is no and yes. It is not possible directly but converting a pointer-to-function
variable to a new pointer-to-function Type is feasible.
The statement:

 typedef int (*ff)(int ,int);

makes ff a pointer-to-function Type. If ff is a Type, then it is possible to declare a pointer-to-function
variable of this type.
The above program is modified to include a function as a parameter of another function:

#include <stdio.h>

 typedef int (*ff)(int, int); // now ff is a TYPE pointer-to-function

 int func1(int, int);
 int gama(int, ff); // gama includes as parameter the type ff

 int main(void)
 {

 printf(“%d\n”, gama(10,)); // prints the value 15
 // &func1 decay to func1
 return 0;

}

 It is assigned to W

int gama(int x, ff w)
{
 return ;
}

 Execute func1()

&func1

w(x,5)

int func1(int x, int y)
{
 return x + y;
}

5.15.8 Anagram.
Enter a word per keyboard between 5 and 15 characters of the English alphabet. Then enter
three space-separated words, where each of the three words must have exactly the same number of
characters as the first word. Your program should detect if any of the three words entered do not meet
the required number of characters and then prompt for a new entry of three words.
Write a function anagram(...) that tells if any of the last three words entered is an anagram of the
first word entered on the keyboard.
Print all words that are anagrams of the first word.
An anagram is a permutation of the characters of one word to build another.
Example: agranda – granada. An anagram is an anagram if two words have the same characters arranged
in a different way.

#include <stdio.h>
#include <stdbool.h>

// determine what each of the four functions declared below does.
_Bool checkPalabras(char*);
_Bool countLetras(char*,int*);
_Bool igualCantidadLetras(char*,int);
void anagrama(char*,char*,int);

int main(int argc, char *argv[])
{
 int count = 0;
 char palabraM[50]; // reserve space for first word.
 char tresPalabras[150]; // reserve space for three words.
 do{
 printf("Enter first word between 5 and 15 characters = "); // enter first Word.
 scanf(" %s", palabraM);}while(!countLetras(palabraM, &count));
 printf("%s\n",palabraM);
 printf("First word =%d\n",count);

